
How do we talk to the network? 
(Thinking about the interface to the network)

Rodrigo Fonseca
Brown University

Oct 27th, 2016

(First: What should you know about
me?)

Brown University
Berkeley

Networking & Distributed Systems

Interfaces, Abstractions
Tracing, Energy, Networking, …

www.cs.brown.edu/people/rfonseca

(First: What should you know about
me?)

Brown University
Berkeley

Networking & Distributed Systems

Interfaces, Abstractions
Tracing, Energy, Networking, …

www.cs.brown.edu/people/rfonseca

A	Portra
it	of	the

	Computer	Sc
ientist	a

s	a	Youn
g	Man	

Interne
t	Archiv

e,	circa	
2004	

(First: What should you know about
me?)

Interfaces, Abstractions

How do we talk to the network?

• When we send packets over TCP/IP, what do
we tell the network?
– Not too much!

• TCP/IP (to a first approximation):
– Treats all packets the same
– Treats all flows the same

• Will be “fair” to flows
– Lets everyone talk to everyone

• This talk: different ways to talk to the network
“Participatory Networking”

Can/should applications change/
choose the behavior of the network?

IP

• Lowest common denominator
• Best effort
• No differentiation

– (at initially, none with global scope)
• Principles

– Design must scale
– Keep it simple
– Modularity is good
– Don’t impose costs of features unneeded by some

https://tools.ietf.org/html/rfc1958	‘Architectural	Principles	of	the	Internet’	
Clark,	D.,	“The	Design	Philosophy	of	the	DARPA	Internet	Protocols”

Over the years, many other
proposals

Question (for you): Why would you want
end-users/applications to express their

needs to the network?

IP’s model not the only option

• ATM (early 90’s, competitor to IP)
– Supposed to unify data and traditional

telecommunications
– Virtual circuit-based
– Constant/Variable/Available/Unspecified Bit Rate

• Integrated Services
– Per-flow QoS guarantees across the Internet
– Absolute guarantees

• Differentiated Services
– Class of service (coarse)
– Relative QoS

Active Networking (late 90’s)
• End-user programmability of the network
• Radical change to the network API

– Packets would carry code (or pointer to code)
– Users could choose which programs to run

• Examples
– Multicast, application-specific QoS, information fusion,

caching
• Potential problems

– Protection among programs, exploitation of state in
routers, global coordination (for non-local properties),
misbehaving applications (e.g., forming loops)

– No killer app

Many more proposals

• E.g., congestion/rate control
– Great results if you know priorities, deadlines
– PDQ, D3, D2CTCP, pFabric, QJump, …
– Mostly extend the API in-band

Thorny questions

• Do users really know what they want?
• What should an interface be like?
• On the Internet:

– Do users trust/care/know about each other?
– What is the incentive to not say your traffic is important?
– Business models: users really like flat rates

• Easier (but not easy):
– Datacenters, single company, home network, …

Hard to answer without doing,
hard to do as some mechanisms require
consensus and changes to the network

Meanwhile…

• Administrators were having a really hard
time managing their networks
– Complex control plane protocols
– Indirect ways to achieve policies

• E.g., tweaking weights in routing protocols
– Access control very hard to get right
– With a pressure to scale AND become cheaper

AF1
AF2

BF1
BF2

R3

Location A

Location B

Data Center

R4

R1 R2

Front Office

i1.1

i1.2

i3.2
i3.1

i4.2
i4.1

i2.1

i2.2

metric=1

metric=1

metric=1 R5

metric=1

metric=1
AD2

AD1

BD1

BD2

Figure 1: Enterprise network with two locations, each location
with a front office and a data-center.

to the data centers to drop packets that violate the policy. Interface
i1.1 is configured with a packet filter that drops all packets from the
BF subnet, and interface i3.1 drops all packets from the AF subnet.
The network functions as desired, until the day when the data-

center staff decides to add a new, high-capacity dedicated link be-
tween the data centers (shown as a dashed line between R1 and
R3—perhaps they have decided to use each other as remote backup
locations). It seems reasonable that with packet filters protecting
the entrances to the data centers, the new link between data cen-
ters should not compromise the security policy. However, the new
link changes the routing such that packets sent from AF to BD will
travel from R2 to R1 to R3 to BD—completely avoiding the packet
filter installed on interface i3.1 and violating the security policy.
When the designers eventually discover the security hole, probably
due to an attack exploiting the hole, they would typically respond
by copying the packet filter from i3.1 to i3.2, so it now also drops
packets from AF. This filter design does plug the security hole, but
it means that if the front office link from R2 to R4 fails, AF will be
unable to reach BF. Even though the links from R2 to R1 to R3 to
R4 are all working, the packet filter on interface i3.2 will drop the
packets from subnet AF.
In this example, the problems arise because the ability of a net-

work to carry packets depends on the routing protocols and the
packet filters working in concert. While routing automatically adapts
to topology changes, there is no corresponding way to automati-
cally adapt packet filters or other state. It could be argued that a
more “optimal” placement of packet filters, or the use of multi-
dimensional packet filters (i.e., filters that test both source and des-
tination address of a packet) would fix the problems shown in this
example. However, as networks grow in size and complexity from
the trivial example used here for illustrative purposes, finding these
optimal placements and maintaining the many multi-dimensional
packet filters they generate requires developing and integrating en-
tirely new sets of tools into the network’s management systems.
Since these tools will be separate from the protocols that control
routing in real time, they will perpetually be attempting to remain
synchronized with routing protocols by trying to model and guess
the protocols’ behavior.
In contrast, the 4D architecture simply and directly eliminates

this entire class of problems. The 4D architecture allows the direct
specification of a “reachability matrix” and automated mechanisms
for simultaneously setting the forwarding-table entries and packet
filters on the routers based on the current network state.

2.2 Peering Policies in Transit Networks
Routing policy is based on the premise that a router that does not

announce a route to a destination to a peer will not be sent pack-

AS1 AS3

AS2

br.nyc.as3

br.atl.as3
br.atl.as1

br.nyc.as1

br.nyc.as2

Figure 2: Autonomous Systems (ASes) peering with each other
via external BGP (eBGP) sessions. AS1 must place packet fil-
ters on its ingress links to prevent AS3 from sending packets to
destinations for which AS1 has not agreed to provide transit.

ets for that destination by that peer. However, the routing system
does nothing to prevent an unscrupulous peer from sending pack-
ets to that destination anyway. Enforcing routing policy is nearly
impossible with today’s control and management planes.
Figure 2 shows an example of three Autonomous Systems (ASes)

peering with each other via three external BGP sessions (one eBGP
session along each of the links shown in the figure). Assume that
AS1 is a major transit network, and it announces a route to desti-
nation d in its eBGP session with AS2. If AS1’s policy is to not
provide AS3 with transit service for d, it does not announce d in
its eBGP sessions with AS3. However, if AS3 wishes to be un-
scrupulous (e.g., use AS1 for transit service without paying), it can
assume AS1 does know a way to d (e.g., so AS1’s own customers
can reach d). If AS3 sends packets for d to br.nyc.as1, they will
definitely be delivered, as br.nyc.as1 must have a route to d in order
to handle legitimate traffic from AS2.
Enforcing routing policy requires installing packet filters to drop

packets to destinations which have not been announced as reach-
able. As the announcements received by an AS, and the AS’s own
topology, change over time, the announcements sent by the AS will
change and the packet filters must be moved correspondingly. Im-
plementing such functionality by adding another ad hoc script to
the management plane is essentially impossible today. Even if it
were possible to write a script that snoops on the eBGP announce-
ments sent to each neighboring border router and installs packet
filters on the ingress interface as appropriate, the script would be
extremely dangerous as it would not properly order the packet filter
installation/removal with the BGP announcements. For example, it
would be bad to announce to a neighbor border router a route to a
destination before removing the packet filters that drop the packets
sent to the destination.
Beyond ordering issues, transit networks handle a large num-

ber of destinations, and each packet filter applied to an interface
consumes forwarding resources and reduces the effective capacity
of the interface. It might be desirable to move packet filters into
the network whenever possible, away from the ingress interfaces,
so that one packet filter can enforce the BGP policy for multiple
ingress interfaces.
Enforcing routing policy requires dynamically placing packet fil-

ters to respond to the continually changing routes selected by that
policy. Correctly and optimally placing the filters requires that the
placement be synchronized with the announcement of routing deci-
sions and that the placement algorithms have access to the complete
routing topology of the network. The 4D architecture provides the
primitives and abstractions needed to implement correct placement
strategies and support placement optimization algorithms.

Enterprise Network

(Too) Many Control Plane Mechanisms

• Designed from scratch for specific goal
• Variety of goals, no modularity:

– Routing: distributed routing algorithms
– Isolation: ACLs, VLANs, Firewalls,…
– Traffic engineering: adjusting weights, MPLS,…

• Variety of implementations
– Globally distributed: routing algorithms
– Manual/scripted configuration: ACLs, VLANs
– Centralized computation: Traffic engineering

• No abstractions
• Network control plane is a complicated mess!

Abstractions for the Control Plane

• A number of projects in the early 2000’s
started talking about breaking the
problem into simpler components
– Including Nick’s group

How do you find abstractions?

• You first decompose the problem….

• …and define abstractions for each
subproblem

• So what is the control plane problem?

17

Task: Compute forwarding state…

• Consistent with low-level hardware/
software
– Which might depend on particular vendor

• Based on entire network topology
– Because many control decisions depend on

topology

• For all routers/switches in network
– Every router/switch needs forwarding state

• Design one-off mechanisms that solve all three

– A sign of how much we love complexity

• No other field would deal with such a problem!

• They would define abstractions for each
subtask

Previous approach

Example
• OSPF:

– 5% for Djikstra’s algorithm,
– 95% to find and maintain the state of the network

Network of Switches and/or Routers

Distributed algorithm running between neighbors
Complicated task-specific distributed algorithm

Traditional Control Mechanisms

Control Program

Software Defined Network (SDN)

Network OS

Global Network View

routing, access control, etc.

Software

Very	simple		
hardware

Major Change in Paradigm

• Control program:
– Configuration = Function(view)

• Control mechanism now program using
NOS API

• Not a distributed protocol, just a graph
algorithm

24

Routing

• Look at graph of network

• Compute routes

• Give to SDN platform, which passes on to
switches

25

Access Control

• Control program decides who can talk to
whom

• Pass this information to SDN platform

• Appropriate ACL flow entries are added to
network
– In the right places (based on the topology)

26

Simple Example: Access Control

Global	
Network	
View

Abstract	
Network	
View

A

B

A

B

Network OS

Global Network View

Abstract Network View

Control Program

Network Virtualization

SDN: Layers for the Control Plane

Clean Separation of Concerns

• Control program: express goals on abstract view
– Driven by Operator Requirements

• Virtualization Layer: abstract view !➔ global
view
– Driven by Specification Abstraction for particular task

• NOS: global view !➔ physical switches
– API: driven by Network State Abstraction
– Switch interface: driven by Forwarding Abstraction

29

Large Impact

• Industry adoption
• Commoditization of switch hardware
• Independent innovation on each layer

– Evolution of programmable switches
– Many controllers (Network OS)
– Many applications

• Network Virtualization, NFV, Google’s and
Microsoft’s Wide Area Networks, SDX, …

• Great power to network administration!

Thorny questions

• Do users really know what they want?
• What would an interface be like?
• On the Internet:

– Do users trust/care/know about each other?
– What is the incentive to not say your traffic is important?
– Business models: users really like flat rates

• Easier (but not easy)
– Datacenters, single company, home network, …

Hard to answer without doing,
hard to do as some mechanisms require
consensus and changes to the network

Great power…

Can the users play too?

• Early OSs were single user, then came
multiprogramming and time sharing

• Can we have the same for networks?

Participatory

34

Andrew	D.	Ferguson,	Arjun	Guha,	Chen	Liang,	Rodrigo	Fonseca,	and	Shriram	Krishnamurthi.	
Participatory	Networking:	An	API	for	Application	Control	of	SDNs.	In	Proc.	ACM	SIGCOMM	2013,	
August	2013.

An API for application control of SDNs

35

Motivation

2. Ekiga
3.
4.

1.

36

2. Ekiga
3.
4.

1. blocks hosts in response to
login attempts

uses knowledge from host OS

prefers to deny traffic close to
source

SSHGuard

SSHGuard

SSHGuard

SSHGuard

SSHGuard

SSHGuard SSHGuard

37

2. Ekiga
3.
4.

1. open source VOIP client

network needs dictated by
end-user

prefers to reserve bandwidth
Ekiga

Ekiga

38

2. Ekiga
3.
4.

1. Paxos-like coordination
service

network needs dictated by
placement

prefers high-priority switch
queues

ZooKeeper

ZooKeeper

ZooKeeper

39

2. Ekiga
3.
4.

1. open source data processing
platform

network weights known by
scheduler

prefers to reserve bandwidth

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

40

SDN Controllers

SSHGuardSSHGuardSSHGuard Ekiga ZooKeeper HadoopEkiga

41

42

1. decompose control and
2. resolve conflicts

Challenges

PA
NE

Participatory
Networking

43

1. Requests
2. Hints
3. Queries

44

Flowgroup

Principals Privileges
src=128.12/16 ⋀ dst.port ≤1024

Alice
Bob

deny, allow
bandwidth: 5Mb/s

limit: 10Mb/s
hint

query

Shares

Hadoop

45

root

root adf

bandwidth
100Mbps

bandwidth
50Mbps

Share Tree

46

⋀

PA
NE

Reserve 2 Mbpsfrom now to +5min?
Yes

This traffic will be

short and bursty

OK
How much web trafficin the last hour?

67,560 bytes

47

bandwidth
100Mbps

bandwidth
100Mbps

bandwidth
100Mbps

PA
NE

Current: 0 Mbps Current: 0 Mbps

Current: 0 Mbps

Reserve 80 Mbps?

Current: 80 Mbps

Yes

Current: 80 Mbps

Re
se

rv
e

50

No

Share
A ShareB

48

root

root adf

bandwidth
100Mbps

bandwidth
50Mbps

Share Tree

49

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Policy Trees

(srcIP=10.0.0.2, GMB=20)

50

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

(srcIP=10.0.0.2, GMB=20)

51

PA
NE

52

PA
NE

53

(d
(ds

(d (sr

(d
(ds

(d (sr

(d
(ds

(d (sr

(d
(ds

(d (sr(d
(ds

(d (sr

PA
NE

54

PA
NE

55

Evaluation

2. Ekiga
3.
4.

1. access
controlbandwidth

reservations
queues for low latency

centralized traffic
weights

56

PA
NE

57

24Mbps5Mbps8Mbps24Mbps

PA
NE

58

24Mbps

PA
NE

59

Three equal-sized sort jobs:
• Two Low Priority with 25% weight
• One High Priority with 50% weight

0

0.25

0.5

0.75

1

1.25

HighPri Speedup

Default With PANEDynamically apply QoS to High
Priority flows using PANE.

PA

2

60

PANE

1. Allows applications to
express what they want from
the network (not only QoS)

2. Allows these applications to

One last example

• Multiple video clients
behind the same home
router

• TCP equalizes the rate of
flows
• many flows per

video, on-off
behavior, and
adaptive behavior

• = unfairness

One last example

• Multiple video clients
behind the same home
router

• TCP equalizes the rate of
flows
• many flows per

video, on-off
behavior, and
adaptive behavior

• = unfairness

University of Stirling

Modified Video Clients

63

Junyang	Chen,	Mostafa	Ammar,	Marwan	Fayed,	Rodrigo	Fonseca.	"Client-Driven	Network-level	
QoE	fairness	for	Encrypted	‘	DASH-S’”,	InternetQoE	2016

Current Landscape 1 Full cDVD Interaction 4

• Measurement Details:
• 6Mpbs bottleneck
• modified dash.js client
• BBC Testcard [4], with 13 video and 2 audio rates of encoding.

�
�
�
�
�
�
�

� ��� ��� ���

��
���
��
��
��
��

���� ���

���������
�������� ��

��������
�������� ��

�������
�������� ��

�
�
�
�
�
�
�

� ��� ��� ���

��
���
��
��
��
��

���� ���

���������
�������� ��

��������
�������� ��

�������
�������� ��

Example Resulting Gains

So, how do we talk to the network?

• SDN gives us another way to change the
network API
– Out-of-band, though flexible and fast control

plane
– Can address and configure many mechanisms

• Contrast with in-band mechanisms
– Packet/flow tags, socket options
– Increasingly programmable data path

• A lot of research in mechanisms, still
plenty to do in policies

Questions?

